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ABSTRACT

Heat extremes pose significant health risks during pregnancy and early childhood. High humidity exacerbates heat stress
but is overlooked by existing models. We investigate the influence of prenatal heat and humidity extremes on child health in
South Asia, a region with a high prevalence of child stunting and rapidly increasing hot-humid extremes. After controlling for
sociodemographic factors, seasonality, and time period, we exploit within-village variation in children’s ages to isolate the effect
of prenatal heat exposure. We find that hot-humid heat is much more detrimental to child health than hot temperatures alone.
Our results suggest that increasing heat and humidity from climate change could drive over 2.2 million additional children in
the region into stunting by 2050, a four-fold increase relative to the temperature-only model. These findings underscore the
importance of accounting for both temperature and humidity when estimating climate change impacts, particularly in vulnerable
regions like South Asia.

Due to climate change, extreme heat events are increasing in frequency, intensity, and duration, posing an immediate and
growing threat to human health1. While the scientific literature has largely focused on the important issue of heat-related
mortality2–4, the lasting health impacts of heat on the living are often overlooked, despite growing evidence linking extremes
with higher morbidity5–7. Even in healthy adults, prolonged exposure to hot environments can raise body temperatures to
dangerous levels, straining the heart and increasing rates of both temporary and permanent organ damage, particularly for the
kidneys5, 6. High humidity exacerbates these effects by preventing the evaporation of sweat from our skin, inhibiting the body’s
natural cooling mechanism8. Ambient air temperature is therefore a coarse measure of the biological stress associated with heat
exposure, which is better captured by composite metrics like the wet-bulb globe temperature that account for the additional
factors that lead to heat stress9, 10. While temperature and humidity are critical factors, wet-bulb globe temperature and related
metrics also incorporate characteristics like wind speed, cloud cover, and sunlight intensity. When we focus only on the impacts
of air temperature, we may considerably underestimate the true cost of climate change, especially in the hot and humid global
tropics11.

Pregnant people and their babies are at a heightened risk for the health consequences associated with hot-humid environments.
During pregnancy, changing hormone levels and increased metabolic heat production inhibit natural cooling, making maternal
core temperature more sensitive to the effects of hot-humid heat and increasing the risk of maternal heat stress, pregnancy loss,
and complications at birth12–14. One multi-national study in sub-Saharan Africa finds that mean birth weights fall by up to 0.9
grams for each day during pregnancy where temperatures reach 100◦F (38◦C)15, while another finds that a 10% increase in the
number of days over 104◦F (40◦C) raises the likelihood of late-stage pregnancy loss by 1.9%16. Given recent advancements
in gridded temperature data17, 18 and an increasing understanding of the importance of additional environmental factors like
humidity19, these studies may underestimate the true effect of extreme heat. In addition to undermining infant health at birth,
prenatal exposures also threaten long-term wellbeing. Disruptions to health and nutrition during the first 1,000 days after
conception have been quantifiably linked to educational, financial, and physical outcomes well into adulthood20–23.

Social and physical vulnerability to extreme heat intersect in South Asia, where inequalities in resource access and high
rates of child undernutrition come head-to-head with rapidly accelerating exposure to extreme heat and humidity24, 25. Now and
in the future, hot-humid conditions are concentrated along South Asia’s river valleys and coasts, which are also home to some
of the densest populations in the world (SI Fig. 1;26). Even if societies succeed in limiting warming to 2◦C above preindustrial
levels, South Asia is expected to suffer from deadly heat events every year27. Meanwhile, rates of child stunting remain high
throughout the region. In 2023, the United Nation’s Children’s Fund (UNICEF) reported that South Asia was home to one third
(54 million) of the world’s stunted children28. Furthermore, existing research shows that the burdens of child undernutrition
and climate change are intrinsically intertwined. Nutritional status is highly sensitive to environmental shocks up to age 529,
particularly for children in poor households who often lack the social and material resources necessary for shock mitigation and



recovery30–32.
In this paper, we conduct a spatially-granular analysis of the effects of prenatal exposure to extreme heat and humidity on

height attainment for approximately 200,000 children in Bangladesh, India, and Nepal. After controlling for a comprehensive
set of demographic characteristics and spatio-temporal confounders related to nutrition, we utilize short-run variation in daily
maximum temperature (Tmax) and maximum wet-bulb globe temperature (WBGTmax) to observe the effect of heat extremes
on height-for-age Z-scores (HAZ) in children under the age of five, a key indicator of chronic undernutrition at a critical stage
of growth and development. Our design adjusts for the non-random assignment of heat exposure across our sample from
spatial and seasonal factors using a village-level fixed effect, a state-by-survey year fixed effect, and controlling for childrens’
calendar month of birth. We therefore compare children with similar sociodemographic characteristics who were born in the
same community and calendar month but slightly different years, which provides plausibly exogenous variation in the weather
conditions during their prenatal periods. When we define extreme heat using WBGTmax, a heat stress metric that incorporates
humidity, we find that prenatal heat exposure is more detrimental to child growth than when we estimate this relationship
using temperature alone. Specifically, a one standard-deviation increase in the number of hot-humid days in the third trimester
decreases height-for-age by 3.7%. The corresponding decrease for just hot days would be 1.3%. Combined with new heat
projections, our coefficient estimates on WBGTmax exposure imply that more than 2.2 million additional children would have
been stunted across our study region had they been exposed to the levels of heat and humidity that are expected by 2050 under
a high-emissions climate change scenario. This estimate shrinks to 500,000 additional children when we apply the coefficient
estimates on maximum temperature.

To our knowledge, this study is the first to quantify the combined effects of extreme heat and humidity on child health at the
regional level. Previous scholars have (1) identified children under five as a population that is particularly vulnerable to climate
shocks32–35 and (2) documented a strong link between extreme heat exposure and increased mortality, particularly for older
adults2, 4, 36, 37, but the observed impacts of temperature extremes on morbidity and its associated economic outcomes7 have
been overlooked in the scientific literature thus far. Extreme heat harms many more people than it kills, and these lingering
impacts have as-of-yet received little attention. Our findings shed light on this relationship, providing striking new evidence that
humid heat events pose a large and growing threat to long-term health and economic stability for children in the global tropics.

Results
Heat Exposure
Figure 1 describes the average conditions during the nine months before birth for children in each community surveyed by
the Demographic and Health Surveys (DHS). Each point represents a DHS survey location, or "cluster." These conditions are
depicted in four ways: Panel (a) shows the average percentage of total days during pregnancy that were relatively cool and dry,
exceeding neither heat threshold; Panel (b) shows the corresponding percentage of days that exceeded both thresholds; Panel (c)
shows the percent of days where Tmax exceeded 35◦C but WBGTmax stayed below 29◦C, indicating dry heat; and Panel (d)
shows the percent of days with WBGTmax>29◦C but Tmax<35◦C, suggesting warm temperatures with high humidity.

Figure 1 reveals that children born in Central Southern India and the high-elevation regions in Nepal and Northern and
Eastern India experienced relatively cool and dry conditions in utero. On the other hand, children along the Southeast coast of
India and the Northwest border with Pakistan–historically hot areas–were frequently exposed to days that were extremely hot
by both definitions. Days in this most extreme category comprised up to 50% of the average pregnancy (or 135-140 days) in
some survey locations. Finally, while hot and dry days are most common in the central swaths of the region (Panel c), those
exceeding only our WBGTmax threshold (Panel d) are more concentrated along the coast of the subcontinent where humidity
is relatively high, as well as in the Indian foothills of the Himalayas and much of Bangladesh. Importantly, these low, humid
areas along the Ganges and Brahmaputra rivers are home to very dense populations, thus amplifying human exposure to humid
heat extremes (SI Fig. 1).

The differences in spatial distribution between Panels (c) and (d) suggest considerable variation in the sub-populations
that are exposed to hot versus hot-humid heat. Our subsequent analyses will explore this variation further by quantifying the
relationship between child health and exposure to both heat extremes. The frequency of extreme days is largely consistent
between Tmax and WBGTmax, and the distributions of each exhibit notable left-skewness (see Fig. 3). See SI Table 1 for
summary statistics on heat exposure across trimesters and heat variables. Additional exploratory analyses reveal that there is a
moderate positive correlation between the number of days with Tmax>35◦C and WBGTmax>29◦C (Pearson coefficient =
0.67) at the trimester level.

Effects on Height-for-Age
Figure 2 presents the coefficients and 95% confidence intervals on prenatal heat exposure from our main models of HAZ,
estimated using a comprehensive suite of fixed effects and demographic controls (see SI for full regression results tables). Panels
(a) and (b) show the coefficients on heat exposure estimated from our Tmax-only and WBGTmax-only models, respectively,
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Figure 1. Spatial distribution of prenatal heat exposure in South Asia. Each point represents a cluster (N=29,357) from the
Demographic and Health Surveys, where color is determined by the average number of days in each heat category experienced
during trimesters 1-3 by 0-to-5 year olds in each cluster. Panel (a) shows the percentage of total days that exceeded neither heat
threshold, Panel (b) shows the percent of days that were extreme by both definitions, Panel (c) shows the percent of days that
met Tmax>35◦C but not WBGTmax>29◦C, and Panel (d) shows the percentage with WBGTmax>29◦C but not Tmax>35◦C.
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Figure 2. Main effects of heat exposure on HAZ. Coefficients and 95% confidence intervals for the effect of Tmax>35◦C (a),
WBGTmax>29◦C (b), and all heat (c) on HAZ. "Tri. 0" refers to the three-month period before conception, which is
represented in each plot with a yellow vertical line. Controls for child’s sex, twin status, birth order, birth location, child’s age
in months, birth month, month of survey, mother’s age in years, mother’s educational attainment, parity, religion, marital status,
and improved toilet access are included in the model but not shown. Fixed effects for cluster and state-by-survey-year are also
omitted (see SI Tables 2-4 for regression results).

whereas Panel (c) presents the results from our joint model with both metrics included. In each case, variables for heat exposure
from every trimester (0-3) are included among the covariates.

Panel (a) of Figure 2 shows that maximum temperatures above 35◦C are associated with reductions in height-for-age when
exposure occurs during the three months before conception (or "trimester 0") and the third trimester of pregnancy. We estimate
that each additional day with Tmax>35◦C decreases the conditional mean of HAZ by 0.001 in the case of pre-conception
exposures and 0.0008 for third trimester exposures. Put differently, a one standard deviation increase in the number of hot days
leading up to conception would reduce HAZ by an average of 0.017 standard deviations in early childhood, while an equivalent
exposure during trimester 3 would result in a reduction of 0.016 standard deviations. The effect in trimester 3 corroborates
findings from previous studies that link late-term heat exposure with increased risk of adverse birth outcomes such as pre-term
birth and low birth weight16, 35. The pre-conception effect points to a less well-documented but plausible mechanism related
to maternal health at the outset of pregnancy15. Meanwhile, heat exposure during trimesters 1 and 2 have no statistically
measurable effect on HAZ.

Like Tmax, WBGTmax extremes are associated with lower HAZ in early childhood, particularly when exposure occurs
at the beginning or the end of the prenatal year (Panel b). Unlike Tmax, however, hot-humid heat during any trimester is
detrimental to child health; all estimated coefficients are negative. Moreover, the negative effects of WBGTmax>29◦C on
height attainment are larger in magnitude than those of Tmax>35◦C. Whereas a one standard deviation increase in days with
Tmax>35◦C during trimester 3 would lower HAZ by only 1.3% from the sample average (-1.57), an equivalent increase in days
with WBGTmax>29◦C would imply a 3.7% decrease in HAZ. These effects are also likely to accumulate across trimesters. For
example, a child who experienced a one-standard deviation increase in hot-humid days in every trimester would be 7.7% shorter
for their age, relative to the sample mean, than a child with average exposure. For Tmax>35◦C, the equivalent cumulative
effect across trimesters would be only a 1.4% decrease in HAZ.

Finally, we present coefficients from a third model (Panel c) that allows for a more direct comparison of the relative health
risks of hot vs hot-humid heat by including all Tmax and WBGTmax exposure variables among the covariates. The results from
this model reaffirm that days with WBGTmax>29◦C pose a greater threat to child health than days with Tmax>35◦C. In fact,
after controlling for hot-humid days, exposure to Tmax>35◦C has little or no negative effect on child growth. The exception
lies in the trimester before conception, where we estimate that each additional day above either heat threshold reduces HAZ
by 0.001 (SE=0.0007) standard deviations. Otherwise, all coefficients on HAZ are now positive in the case of Tmax while
remaining negative in the case of WBGTmax. While some of the polarization in effect sign may be attributable to the moderate
positive correlation between our two heat thresholds, it remains notable the effects of hot-humid extremes remain remarkably
consistent with the WBGTmax-only model (Panel b).

To further characterize our main findings, we combine the effects presented in Figure 2 (Panels a and b) with new projections
of WBGTmax and Tmax produced by the Climate Hazards Center38. These data leverage the same daily 0.05◦ heat records
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used in our main analysis, but they are now perturbed according to four climate change scenarios. Replicating the procedure
used in the primary dataset, we link our sample of children to the conditions they would have experienced during their prenatal
year under a high-emissions climate change scenario (SSP5-8.5) with 2050 warming (SI Table 1). Because we use each child’s
unique month, year, and location of birth to identify exposure to extremes, we retain full spatial and temporal variation in the
projected data. With the resulting dataset, we calculate the difference between the projected and observed number of extreme
days for each trimester for each child. Under the 2050 warming scenario, the average child in our sample is projected to
experience approximately 34 days per trimester with WBGTmax>29◦C and 28 days with Tmax>35◦C, representing a 54.5%
and 47.4% increase in average exposure from our sample mean of 22 days and 19 days, respectively.

Next, we multiply our coefficients on WBGTmax>29◦C exposure (Fig. 2b) by the projected change in extreme days for
each child (SI Table 1) and sum the results across all trimesters. On average, the projected increase in hot-humid heat would
imply a decrease HAZ by 0.05 units, suggesting a shift into stunting for any child whose observed HAZ score falls between
-1.95 and -2. In total, we calculate that an additional 0.018% (N=3,489) of all children in our dataset would be stunted had
their prenatal period occurred under 2050 conditions, a fraction that contains more than 2.2 million children under the age of
5 after applying DHS survey weights. These weights are derived using the United Nations Population Division population
estimates from each county at the time of each DHS survey round (Boyle et al., 2022). Using the same logic and corresponding
point estimates from our regression of HAZ on Tmax exposure (Fig. 2a), we calculate that increased temperatures under 2050
warming would only have the power to induce stunting in an additional 500,000 children compared to the stunting reflected in
the DHS sample. This difference implies that failing to account for the added effect of humidity would lead us to underestimate
the vulnerable population by over 1.7 million children. Note that these estimates carry a large degree of uncertainty from
several sources, including our coefficient estimates, overall statistical model, and projections of temperature and wet-bulb globe
temperature. They should be understood as an imperfect illustration of the relative magnitude of our coefficients on WBGTmax
and Tmax rather than a prediction of stunting rates in 2050. Finally, given that population growth is often the largest contributor
to rising rates of hot-humid heat exposure in South Asia25, this approximation may be an underestimate of the true number of
children who will be vulnerable to heat-induced stunting in 2050 after accounting for the growing population.

Robustness Checks
We run several tests and additional model specifications to alleviate concerns regarding causality in our main results. First, we
replicate all HAZ models using the probability of stunting as the outcome (HAZ < -2) in order to highlight the effects of heat
exposure among those in the left tail of the height-for-age distribution (SI Tables 5-7 and SI Fig. 2). We observe the same
pattern of effects from these models as from our main HAZ regressions, if somewhat more pronounced. Second, we re-run our
main models using higher heat thresholds (Tmax=40◦C and WBGTmax=31◦C; SI Fig. 3). While the point estimates from these
models appear to suggest these hotter conditions are less dangerous than Tmax>35◦C and WBGTmax>29◦C, they suffer from
a lack of precision given the rarity of these extreme values across much of our study region. These estimates are also likely
subject to increases in selection bias as the risk of missed conceptions, pregnancy loss, preterm birth, and stillbirth increase at
the highest heat values16, 39, 40. Third, we add a control for total precipitation at the trimester level, as precipitation is correlated
with both temperature and humidity. The results from this model, shown in SI Figure 4, remain similar to those in Figure 2.
Fourth, we investigate the importance of our primary exposure periods (trimesters 0-3) by adding variables for exposure to
WBGTmax>29◦C during the period 3-6 months before conception ("trimester -1") and the 3 months after birth ("trimester 4").
The new coefficients on hot-humid heat during trimesters -1 and 4 are close to zero whereas those on trimesters 0-3 remain
consistent with our main results (SI Fig. 5).

Discussion
Our results indicate that exposure to extreme heat during the year before birth undermines child health, reducing height-for-age
for children under the age of five in Bangladesh, India, and Nepal. Compared to temperature alone, exposure to wet-bulb globe
temperature extremes is associated with much stronger reductions in height attainment, reflecting a lowered ability to cope with
extreme heat during humid conditions. In the third trimester, a one-standard deviation increase in humid heat exposure is seven
times more detrimental to height attainment than an equivalent increase in exposure to heat alone, decreasing HAZ by 3.7% and
1.3% relative to the sample mean, respectively. Our point estimates are consistent with previous research on climate-induced
stunting. Whereas we find that each additional day in the third trimester with WBGTmax>29◦C decreases HAZ by 0.002 units,
two recent studies find a 0.003 unit decrease in HAZ associated with both (a) each day of delayed monsoon onset in Indonesia
and (b) each day with extreme rain in South Asia during the prenatal period32, 41. The effects we uncover are also notable in
magnitude. Combined with new climate projections, our coefficient estimates on WBGTmax imply that more than 2.2 million
additional children would have been stunted in our three study countries had they been exposed to levels of heat and humidity
expected by 2050 under a high-emissions climate change scenario. When we define future heat exposure using Tmax, we
undercount this effect by approximately 1.7 million children.
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Moreover, our results corroborate previous scholars’ assertations that the timing of exposure plays a critical role in
determining the long-term impacts of climate shocks on child health42. The adverse effects of heat exposure during trimester 3
documented above align with existing epidemiological evidence that heat stress and dehydration towards the end of gestation
can induce labor prematurely, thereby increasing rates of pre-term birth and associated health risk for mothers and babies16, 35.
We also find consistent and suggestive evidence that exposure to hot-humid extremes during the three months before conception
undermines health. This added vulnerability during the pre-conception period suggests that maternal health status at the
outset of pregnancy can influence children’s outcomes at birth and beyond. Indeed, previous research has linked extreme heat
during this period with decreases in both conception rates39 and birth weights43. This result is also in alignment with a recent
large-scale study that finds that the well-being of reproductive-age women in low- and middle-income countries is sensitive to
temperature shocks across a wide range of outcomes, including nutritional health and fertility behavior7. Though more research
is needed to illuminate the exact mechanisms linking extreme heat before conception with height attainment after birth, the
physiological consequences of extreme heat exposure during the weeks leading up to and following conception may set the
most socially vulnerable children on a path towards slower growth.

There are several limitations to our data and specification choices that could influence the analysis and findings presented
here. First, the DHS variables for children’s age, month and year of birth, and length of residence in their current household
rely on respondents’ recall, and therefore may be subject to measurement error based on flawed memory and approximations
(see44 and45 for discussions on age heaping in the DHS). This potential measurement error may then affect our identification
of heat exposure, which is based on exact month of birth and location of each mother within her cluster of residence during
the year before giving birth. We are also unable to define exact trimester of exposure given that the DHS lacks complete and
reliable information on day of birth and length of gestation, meaning that we necessarily take on some measurement error at the
sub-monthly scale in our variables for the total number of hot days per trimester. Data limitations further inhibit our ability to
identify the mechanisms that drive the relationship between heat exposure and HAZ that we observe here. These data alone
lack the specificity and power needed to identify or eliminate precise mechanisms. Additionally, our results may be sensitive
to the specification of heat thresholds and the combination of data from multiple countries, though the fixed effects in our
models account for the vast majority of cross-country differences. See SI Fig. 3 for a version of our main models using higher
thresholds for Tmax (40◦C) and WBGTmax (31◦C). Frequency and intensity of exposure to extreme heat and humidity are
highly variable across South Asia (Fig. 1), meaning that days above our heat thresholds (Tmax>35◦C and WBGTmax>29◦C)
are more common in some communities than others, influencing the precision of our estimates in cooler and drier regions.
Future research should take this variability into account when identifying critical thresholds for heat exposure.

Taken together, our results suggest that the long-run health consequences of extreme heat and humidity during the prenatal
period represent a vastly underappreciated cost of climate change. Exposure to hot-humid extremes continues to accelerate in
these regions, threatening to undermine ongoing efforts to improve child health and economic outcomes. Jobs, farms, cities and
people tend to be located along densely populated tropical river valleys and coastlines, where it is frequently very humid and
likely to see increases in both heat and humidity in the coming decades. South Asian humid heat extremes, therefore, tend to
follow population distributions, amplifying risk (SI Fig. 1). Our findings point to an opportunity to protect child and maternal
health from climate extremes by enhancing warning systems and medical support for pregnant people during periods of extreme
heat and humidity.

Methods

Heat Data
We extract daily records of maximum temperature (Tmax) and maximum wet-bulb globe temperature (WBGTmax) for each
DHS survey location using the Climate Hazards Center InfraRed Temperature with Stations data (CHIRTS), a high-resolution
gridded temperature product created by the Climate Hazards Center at the University of California, Santa Barbara. Specifically
developed to perform well in poorly monitored regions of the Global South, CHIRTS is the most robust temperature product
available to date, improving upon previous datasets by combining satellite imagery with reanalysis data and in-situ station
observations to produce accurate, fine-scale (0.05◦ resolution) temperature estimates in otherwise data-poor regions17, 18. This
product is particularly crucial in enabling our use of WBGTmax as a key explanatory variable. In addition to ambient air
temperature, WBGTmax contains information about relative humidity, wind speed, and sunlight intensity, all of which influence
the body’s ability to dissipate heat46. In CHIRTS WBGTmax, these influences are parameterized as a function of heat index
(HI) (Eq. 1). Detailed validation studies can be found in18 and the supplemental material in25. While there are different
means of quantifying humid heat extremes, all approaches face severe data limitations in India, Bangladesh and Nepal, where
monthly17 and daily18 temperature observations are very limited. Following Bernard and Iheanacho46, WBGTmax is calculated
as follows:
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WBGTmax(
◦C) =−0.0034∗HI2

max(
◦F)+0.96∗HImax(

◦F)−34 (1)

where HImax is calculated in accordance with guidelines from the National Oceanic and Atmospheric Administration using
daily temperature data from CHIRTS and daily relative humidity from down-scaled reanalysis data from version 5 of the
European Centre for Medium-Range Weather Forecasts Reanalysis (ERA5) (see Materials and Methods in25).

Defining Exposure
We define extreme heat days using one biologically-relevant threshold for each variable: 35◦C for Tmax and 29◦C for
WBGTmax. Though some existing studies use relative thresholds (usually based on percentiles of local temperature distributions
or deviations from a historical mean, e.g.32, we argue that absolute metrics are better suited for capturing the physiological
mechanisms that link extreme heat and maternal and infant health in the prenatal period35. Ambient air temperatures exceeding
35◦C have been consistently shown to increase the risk of heat-induced morbidity and mortality4, 47, and wet-bulb globe
temperatures above 29◦C are classified as hazardous for unacclimatized people at low metabolic rates (125 to 235 W) by the
US Occupational Safety and Health Administration48 and the International Standards Organization49. Furthermore, days with
Tmax>35◦C and WBGTmax>29◦C occur with nearly equal frequency (21% and 20%, respectively) in our sample, making
them comparable in terms of exposure and acclimatization within the population (SI Table 1).

We use information on month, year, and location of birth from the Demographic and Health Surveys to define prenatal heat
exposure for each child in our sample. For each day in the CHIRTS observational period (1983-2016), we extract a spatial
mean of all pixels that lie within a 10-kilometer buffer around each DHS survey location. This buffer accounts for the random
displacement of surveyed locations performed by the DHS to protect respondents’ privacy. Though scholars have shown that
alternative geospatial approaches are sometimes better suited to accounting for such displacement in population-environment
research50, this buffer technique remains robust when dealing with temperature variables. We then use each child’s month and
year of birth to count the number of days with Tmax>35◦C and WBGTmax>29◦C during each trimester in the year before
birth. In addition to trimesters 1-3, during which gestation takes place, we also observe heat exposure during "trimester 0,"
which spans the three months preceding conception. Aside from the importance of proper maternal nutrition and health leading
up to pregnancy42, extreme heat during this period has been shown reduce conceptions39, 51 and decrease the birth weights of
babies born 9-12 months later15, suggesting that these pre-conception months are important determinants of health trajectories
for mothers and babies throughout pregnancy and beyond. Because the exact day of birth is rarely recorded and subject to recall
error, we mark the start and end of each trimester using the 15th day of a given month. Though consistent across observations,
this strategy means that a fraction of hot days is necessarily mis-assigned for any child not born on the 15th of the month.
Without information on length of gestation, we also assume that each pregnancy reached a full nine months. Finally, to protect
our identification of individual-level heat exposure, we exclude any respondents who moved residences at any point during the
child’s life or prenatal year, as well as those lacking data on migration history altogether (N=120,608).

Figure 3 depicts the distribution of Tmax and WBGTmax, and the orange lines denote our final biologically-relevant heat
thresholds for each. While both distributions are left-skewed, this feature is particularly pronounced for WBGTmax. The mode
of both distributions falls around 30◦C, although Panel (b) also shows a heaping of WBGTmax values around 22◦C. For WBGT,
this means that the most typical humid heat values are already potentially dangerous. This feature may reflect a seasonal shift in
WBGTmax, or else regional differences in heat and humidity across the subcontinent. In our study locations, 72.1% of days
from 1983-2016 did not exceed either heat threshold, 12.5% exceeded both, 7.4% were extreme by Tmax standards only, and
8.1% were extreme according only to WBGTmax. See Figure 1 for an understanding of how each of these four categories are
distributed geographically across the region. The 15.5% of days that exceed one threshold but not the other reflect the complex
construction of wet-bulb globe temperature.

Child Health Data
We leverage data on child growth trajectories, demographic characteristics, and village locations from the Demographic and
Health Surveys. The DHS collect detailed, representative data on anthropometrics and demographics in countries that often
lack adequate local and national health data. We access the DHS child questionnaires in a user–friendly format from IPUMS52.
Our sample includes 0- to 5-year-old children from all IPUMS-DHS surveys in Bangladesh, India, and Nepal that contain both
child anthropometric records (i.e., height and weight, measured at the time of survey) and geographic identifiers at the DHS’
smallest spatial unit. These spatial units are referred to as “clusters” and are approximately the size of a single rural village or
urban city block. In total, our final dataset contains 29,357 clusters with 198,710 observations from the following DHS rounds:
Bangladesh 1999-2000 (N=4,260), Bangladesh 2004 (N=4,552), Bangladesh 2007 (N=3,951), India 2015- 2016 (N=174,668),
Nepal 2001 (N=5,230), Nepal 2006 (N=4,229), and Nepal 2016 (N=1,820). Note that while DHS round-specific sampling
weights help to balance unequal sample sizes between rounds, the majority of our observations are from India 2015-2016, an El
Niño year with exceptionally warm Indian air temperatures26.
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Figure 3. Density curves of daily Tmax (Panel a) and WBGTmax (Panel b) in all DHS clusters (1983-2016). Orange dotted
lines mark our biologically-relevant thresholds (Tmax=35◦C, WBGTmax=29◦C).

Figure 4. Density curve of HAZ in DHS sample. Black dotted line marks the sample median. Orange and red dashed lines
mark the WHO thresholds for stunting and severe stunting, respectively.

Our outcome measure for child height is a continuous Z-score of height-for-age ratio, which is the basis for defining stunting
(HAZ<-2)53. This anthropometric measurement is observed at the time of survey only. We include stunting as an additional
outcome in the Supplemental Information (see SI Tables 5-6 and SI Figure 2). Figure 4 presents the distribution of HAZ in
our sample, with markers for the thresholds of stunting and severe stunting as well as the sample median. The height-for-age
Z-score for each child is calculated relative to the median height among a globally-representative population of children of
the same age and sex53, and ranges from -6 to 6 standard deviations. Strikingly, the sample median falls close to HAZ = -2,
meaning that nearly 50% of all 0 to 5 year-olds in our sample were stunted at the time of survey. In addition to HAZ, we
employ a number of key demographic variables related to socioeconomic status, child development, and health. See Estimation
Strategy for a full list of covariates and SI Table 1 for summary statistics.

Estimation Strategy

We employ two main models of child height. First, we regress height attainment on trimester-level exposure to either
Tmax>35◦C or WBGTmax>29◦C, along with our full suite of demographic controls and cluster, month, and state by survey-
year fixed effects (Equation 2). We run this model twice—once for Tmax and once for WBGTmax extremes—and include
covariates for exposure in all trimesters (0-3) each time. See SI Figure 5 for the results of an alternative model that includes
exposure during the 3-month period before trimester 0 as well as the 3 months after birth. Our first regression is estimated as
follows:
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Yi j = β0 +
τ=3

∑
τ=0

β1τ
Dhτi j +β2Xi j +µ j + γts + εi j (2)

where Yi j is the HAZ score for child i in DHS cluster j. As a supplement, we also run Eq. 2 as a linear probability model with
stunting as the outcome (see SI Tables 5-7 and SI Fig. 2). β1 captures the effect of a marginal increase in the number of days
(Dhτi j) that the heat metric D exceeded threshold h (corresponding to Tmax>35◦C or WBGTmax>29◦C) during trimester
τ for child i in cluster j on our prediction of the conditional mean of HAZ, holding other covariates constant. See SI Figure
4 for a version of Eq. (2) that adds a control for total precipitation at the trimester level. The Xi j term is a comprehensive
set of controls at the child, maternal, and household levels. These include the child’s sex, twin status, birth order, and birth
location (health clinic or other); mother’s educational attainment, parity, religion, and marital status; and an indicator variable
for whether the household has access to an improved toilet (defined using DHS classifications). A set of individual-level
controls for child’s age in months, birth month, mother’s age in years, and month of DHS survey is also captured in Xi j to
account for nonlinearity in height-for-age across age groups and seasonal variation in nutritional status. We include cluster
fixed effects (µ j), which control for latent and time-invariant community-level characteristics that influence children’s heights.
Finally, we include state-by-survey-year fixed effects (γts) to flexibly capture macro-level trends in child health and nutrition
over time. With these robust fixed effects, the remaining variation comes from within-cluster differences in prenatal heat
exposure among individuals, based on the varying ages of children in our sample. Specifically, we compare children with
similar sociodemographic characteristics who were born in the same cluster and calendar month but different years within the
five-year period captured retrospectively by a given DHS survey. We assume that this remaining variation in heat exposure
is random after controlling for spatial, temporal, and socioeconomic factors. We further include DHS sampling weights to
account for the clustered sampling design and unequal sample sizes across countries and survey years, and we cluster standard
errors at the DHS cluster level.

Our second model closely mirrors Eq. (2), but now includes covariates for trimester-level exposure to both Tmax>35◦C
(θτi j) and WBGTmax>29◦C (ωτi j) so as to create a more direct comparison of the relative health effects of each heat type
(Equation 3).

Yi j = β0 +
τ=3

∑
τ=0

β1τ
θτi j +

τ=3

∑
τ=0

β2τ
ωτi j +β3Xi j +µ j + γts + εi j (3)

Now, β1 should represents the change in the conditional mean of the outcome given a marginal increase in the number of days
where Tmax exceeded 35◦C during trimester τ for child i living in cluster j after holding hot-humid heat exposure constant,
in addition to the other covariates. Likewise, β2 now reports the marginal effect of trimester-level exposure to days with
WBGTmax>29◦C, unconfounded by Tmax. The excluded category therefore encompasses all days that do not surpass either
heat threshold. The outcome variable, controls, and fixed effect terms remain unchanged from Eq. (2). See SI Table 7 and SI
Fig. 2 for a version of Eq. 3 with the probability of stunting as the outcome.

Data Availability
CHIRTSdaily gridded temperature data, wet-bulb globe temperature data, and CHC-CMIP6 projection data are publicly available
from the Climate Hazards Center (https://data.chc.ucsb.edu/products/CHIRTSdaily/). The Demographic
and Health Survey data used for this study are available after a simple application at www.dhsprogram.com and can be
easily accessed through IPUMS (https://www.idhsdata.org/idhs/).

Code Availability
Analyses were performed in R, a free and open-source data management software. To the extent possible given data privacy
limitations associated with the Demographic and Health Surveys, all code will be made publicly available via GitHub upon
publication.
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